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ABSTRACT   

Coronary artery disease (CAD) is one of the leading causes of death worldwide. The computed tomography angiography 
(CTA) is increasingly used to diagnose CAD due to its non-invasive nature and high-resolution three-dimensional (3D) 
imaging capability of the coronary artery anatomy. CTA allows for identification and grading of stenosis by evaluating 
the degree of narrowing of the blood-filled coronary artery lumen. Both identification and grading rely on the precise 
segmentation of the coronary arteries on CTA images. In this paper, a fully automatic segmentation framework is 
proposed to extract the coronary arteries from the whole cardiac CTA images. The framework adopts a paired multi-
scale 3D deep convolutional neural networks (CNNs) to identify which voxels belong to the vessel lumen. Voxels that 
may belong to coronary artery lumen are recognized by the first CNN in the pair and both artery positives and artery-like 
negatives are distinguished by the second one. Each CNN is assigned to a different task. They share the same 
architecture in common but with different weights. In order to combine local and larger contextual information, we adopt 
a dual pathway architecture that can process the input image simultaneously on multiple scales. The experiments were 
performed on a CTA dataset from 44 patients. 35 CTA scans are used for training and the rests for testing. The proposed 
segmentation framework achieved a mean Dice similarity coefficient (DSC) of 0.8649 and mean surface distance (MSD) 
of 0.5571 with reference to manual annotations. Experimental results show that the proposed framework is capable of 
performing complete, accurate and robust segmentation of the coronary arteries. 

Keywords: 3D convolutional neural network, deep learning, cardiac computed tomography angiography, coronary 
arteries segmentation 
 

1. INTRODUCTION  
Over the past decades, coronary artery disease (CAD) has been one of the most common causes of human deaths in the 
world.1 Many factors may contribute to the development of CAD, of which stenosis caused by atherosclerosis is the most 
common factor.2 Computed tomography angiography (CTA) has become the most commonly used technique for clinical 
plaque assessment and stenosis detection,3 with the advantages of non-invasive nature and the high-resolution 3D 
imaging capability of the complete coronary tree.4 Most plaque evaluation and stenosis detection rely on a (semi)-
automatically segmentation of the coronary arteries.5 Therefore, the coronary arteries are usually extracted first. 
Inaccurate segmentation of coronary arteries will result in fatal false diagnosis because a missing segment or mixed 
extraction of other structures may lead to the improper plaque evaluation and stenosis detection. 

In recent years, numerous studies are committed to the extraction of vascular tree. The vast majority of these studies 
concentrate on the segmentation of coronary artery tree (CAT)6 and fall broadly into two categories, data-based methods 
and model-based methods.7 The data-based approaches typically focus on image enhancement techniques to identify 
blood vessels, the estimation of vessel diameter, the detection of bifurcations, centerline extraction and special structures 
recognition.8 These studies treat the blood vessels as a group of interconnected tubular structures on which the 
bifurcation and stenosis presence, without the use of any anatomical information. Most recent published CAT 
segmentation studies based on the model-based approaches that improve the segmentation accuracy by involving 
anatomical models or atlases.7 The model-based methods first build predefined models or atlases, then extract the 
relevant information from the existing dataset and perform a registration process. The pre-defined vascular model is the 
prerequisite for blood vessels and centerlines recognition, which is time consuming. In addition, the large differences in 
the anatomy of the coronary arteries between individuals also increase the difficulty of segmentation.  
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Figure 1. The proposed framework for fully automatic segmentation of the coronary arteries. The upper network is CNN1 
and the lower one is CNN2. Each CNN has two convolutional pathways with residual connections. The input segments 
center of the two pathways is located at the same location of the image and the extracted segments from the down-sampled 
image are taken as input to the second pathway. Up represent the upsampling layer while C represent the classification layer. 
The number and size of feature maps (FMs) are recorded as (Number×Size). 

 

Deep learning shows a trend of rapid growth in the field of machine learning, which currently drives the booming of 
artificial intelligence. In many applications of computer vision, the performance of convolutional neural networks 
(CNNs) has exceeded the state-of-the-art. Moreover, CNNs have also been successfully used in a variety of medical 
image processing tasks, such as the segmentation of knee cartilage,9 lymph node detection,10 brain tissue segmentation11 
and pulmonary nodule classification.12  

Being inspired by the work concerned with the brain lesion segmentation in MRI images,13 we propose a fully 
automatic framework that adopts a paired multi-scale 3D deep convolutional neural networks to extract the coronary 
arteries from the whole cardiac CTA images. Such a strategy has no need of any post-processing steps while can achieve 
satisfactory results. 

2. METHODS 
This study aims to extract the coronary arteries from the CTA images with human-annotated masks. As shown in Fig.1, 
given CTA images as input data, we first construct a full convolutional network CNN1 (with a dual pathway 
architecture) model to generate the coronary artery candidate masks. Then CNN2 which has the same architecture as 
CNN1 is built to produce the final probability map, taking the samples extracted within the candidate mask generated by 
CNN1 as input. Finally, the probability map of coronary arteries is thresholded to get the final binary segmentation map. 
In the following sub-sections, components in the proposed framework for automatic segmentation of coronary arteries 
are introduced in details. 

2.1 Data preparation and pre-processing 

In this study, a total of 44 consecutive cardiac CTA exams of patients were included in the dataset, made on a dual-
source CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany). The CTA scans with ECG-
triggering and contrast enhancement were acquired with 120 KVp tube voltage and 55 mAs tube current. The ground-
truth manual annotations were obtained by two experienced cardiologists who were blinded to the patient’s clinical 
information by using a commercially available software MIMICS.14 The datasets were obtained with different voxel 
sizes between individuals and were resampled to the same voxel size of 0.53. Then we normalized the intensity of the 
images to a zero-mean, unit-variance space. The images were reflected along the sagittal axis to expand the training data. 
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2.2 Paired CNN architecture 

In this paper, we use a pair of CNNs to classify voxels in the CTA images, which are purely convolutional, i.e. there are 
no pooling layers and fully connected layers are implemented as convolutions, thereby an efficient voxel classification 
can be achieved. Each CNN has a specific task. The first CNN (CNN1) selects voxels that may belong to coronary artery 
throughout the cardiac CTA images, focuses on detecting artery-like voxels and learning to discard most of the negative 
samples. The second CNN (CNN2) identifies artery voxels among all these suspected samples. The two CNNs are 
trained in order. For each training image, a coronary artery coarse mask is generated by CNN1, which contains artery-
like voxels and excludes the negatives such as bones and adipose tissues. Then, CNN2 is trained using only the samples 
extracted from the coronary artery coarse mask obtained by CNN1. In order to take advantage of the already learned 
knowledge, CNN2 is initialized with the weights of the final version of CNN1 and fine-tuned with the samples from the 
coronary artery coarse mask. Therefore, CNN1 and CNN2 share their architecture but have different trainable 
parameters. The overview of the network architecture is shown in Figure.1. 

2.3 Multi-scale 3D convolutional networks 

Combining local and larger contextual information in the decision process has been shown beneficial in other works.15 In 
order to efficiently achieve this merging, each CNN uses a dual pathway architecture that processes the input images at 
multiple scales simultaneously to obtain a larger receptive field for the final classification layer at low computational 
costs. The first pathway operates on the original images to capture the detailed local appearance of the structures, while 
the second pathway utilizes the down-sampled images to learn more advanced features such as the coronary arteries 
location information. In order to preserve the dense inference characteristic of the CNN, the feature maps (FMs) of the 
last convolutional layer of the second pathway are upsampled to match the dimensions of the last convolutional layer of 
the first pathway. Then, as shown in Fig.1, the two feature maps are connected together. Since the two pathways are 
separated in this way, context in any size can be handled using the second pathway by simply changing the down-
sampling factor FD. 

Unlike most popular used 2D CNNs, 3D CNNs adopted in our framework makes better use of the volumetric image 
data. Fully 3D CNNs brings about an increased number of parameters, with significant memory and computational 
requirements.10 A few tricks are used to address these problems. First, when the input size is larger than CNN’s receptive 
field, the fully convolutional networks can make dense-inference.16 In order to enable dense-inference, the final 
classification layer is actually a convolutional layer with a kernel size of 13. When performing image segmentation, the 
receptive field is shifted over the input images, it is possible to predict multiple voxels simultaneously. This method 
avoids repeated convolution calculations on the same voxels over a large number of overlapping patches, which can 
greatly reduce the computational costs and memory loads. Second, as a large 3D networks are adopted in this paper, 
there are a plenty of FMs need to be cached. Due to the GPU memory limitations, the input of the networks uses 
segments composed of voxels instead of individual patches. The size of the segments is larger than the patches, but small 
enough for memory capacity. A training strategy that uses the dense inference on image segments is employed in this 
paper.13 If the training batches are formed of N segments extracted from the training set, the cost function becomes  
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where nB is the n-th segment in the batch and nl is the corresponding true label. There are M predicted voxels in total. 
m
nl represents the true label for the m-th voxel in the segment, mz  is the corresponding location information in the 

classification FMs and n
ml

P  is the output of the softmax function. It’s a mixed solution between the dense-inference 

training on a whole image and the commonly used training on individual patches.17 Finally, inspired by VGG,18 the 
adopted network makes use of small 33  convolutional kernels. This trick can be used to build deeper CNNs while 
keeping the number of training parameters at a lower level. 

As shown in Fig.2, the number of positive samples is much less than the negative ones in the whole cardiac CTA 
images. If we generate the training segments using slide windows on the whole cardiac CTA images, this can lead to a 
serious class imbalance. It’s a critical issue that will have a direct impact on the accuracy of the segmentation. In this 
study, we extract segments whose centers have a half probability of being on foreground or background voxels, 
alleviating the problem of class-imbalance.  
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Recent studies have shown that residual connections can facilitate preservation of the flowing signals and therefore 
capable of training very deep neural networks.19 Although the networks used in biomedical field typically contains a 
relatively small number of layers compared to the modern architectures in computer vision, considering the trainable 
parameters in the 3D kernels, the problem of preserving the forward and backward propagating signals and the difficulty 
of optimization may be quite large in 3D CNNs.13 In this study, for each pathway of CNNs, except for the first two 
layers, residual connections are added between the outputs of every two layers. Each layer block is ordered in batch-
normalization, non-linearity and convolution. Previous studies have shown that this arrangement can achieve better 
performance.20 In this paper, the element-wise addition⊕ is performed between the output lO  of layer l and the input 

1lI −  of the previous layer with the operation of residual connection. Formula follows  
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where l represents any layer after adding a residual connection, the superscript k denotes the k-th channel and lK is the 
number of FMs in layer l. In order to match the dimensions of lO , l̂I  is padded in the (x, y, z) dimensions with reflection 
respectively. 

 
Figure 2. The distribution of positive and negative samples in sagittal, coronal and axial view, respectively. The yellow 
mask indicates the right coronary artery, the red stands for the left coronary artery and the remaining background for 
negative samples. As we can see that the number of negative samples is much larger than the positive ones. 

 

3. RESULTS 
During the training stage, the images are randomly divided into two datasets, i.e., the training set with 27 images and the 
validation set with 8 images respectively. At regular intervals, we extract the equal number of segments from each of the 
validation images for a total of 10k to monitor the changes of segmentation accuracy during training. Full segmentation 
of the validation datasets and the calculation of the mean Dice similarity coefficient (DSC) are performed every five 
epochs. The low resolution images were downsampled from the original images (normal resolution) by a factor of three. 
The deep learning library Theano21 is used to realize the CNNS. The PReLu non-linearity is used in this paper. The 
RMSProp optimizer and Nesterov momentum with value 0.6 are applied to train the networks. L1 and L2 regularization 
are also used in our works with values of 10-6 and 10-4 respectively. The networks are trained with dense-training using 
batches of 10 segments. Each segment has a size of 253. One thing to note, the weights of CNN1 are initialized by 
sampling from the normal distribution N(0, 0.01), while the weights of CNN2 are initialized with the final weights of 
CNN1. Throughout the training process, the initial learning rate is set to lr = -410 and halved when the plateau is 
converged. 

To evaluate the segmentation performance of the proposed framework, DSC and MSD are used to compare the 
thresholded probability map with the manually annotated result. The index of quantitative assessment is shown in Table 
1. The segmentation results are compared with the results using only a single CNN in the paired CNN architecture. We 
then further show the qualitative segmentation results for three patients in Fig. 3. We can observe that satisfactory 
performance is achieved on our proposed framework, while the results on the single CNN are not reasonable.  
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Figure 3. Qualitative evaluation of the coronary arteries segmentation framework for three patients. (a): CTA images, (b): 
manual annotations, (c): segmentation masks acquired by the single CNN, (d): final segmentation results. 

 

Table 1. Comparison of the segmentation results. 
Network DSC [%] MSD [mm] 

Single CNN 0.7270 ± 0.0859 6.3757 ± 5.2899 
Proposed framework 0.8649 ± 0.0329 0.5571 ± 0.4196 

 

4. CONCLUSION AND DISCUSSION 
In this paper, we propose a fully automatic framework to segment the coronary artery from the whole cardiac CTA 
images. This framework adopts a paired multi-scale 3D deep convolutional neural network to identify voxels that belong 
to the vessel lumen. CNN1 identifies voxels that may belong to the coronary artery, thereby excluding the vast majority 
negative voxels such as bones and adipose tissues. Subsequently, the identified artery-like voxels are classified by 
CNN2, which distinguishes between artery and artery-like negatives. The coronary arteries are segmented from the CTA 
images in a coarse-to-fine manner. This architecture can significantly improve the segmentation results. No manual 
interaction and post-processing are involved in the entire segmentation process. Our framework does not need to limit 
the volume of interesting (VOI), such as the bounding box around the heart. The coronary segmentation results are 
obtained directly from the whole cardiac CTA images, avoiding the trouble of determining the VOI. The experimental 
results show that the proposed framework has a good performance in the segmentation of coronary arteries from CTA 
images. 

For the further study, we intend to combine coronary artery lumen segmentation with landmark detection. Coupled 
with landmark information may promote vascular segmentation. In addition, as far as we know, currently there is a lack 
of clinical software that automatically divides coronary arteries into 17 modified AHA segments.22 Cardiologists need to 
artificially determine which coronary segment the lesion belongs to when performing surgical reports. This is a time-
consuming procedure. Only after a period of training can cardiologists achieve reliable results. Recent study has 
successfully completed the task of craniomaxillofacial bone segmentation with the assistance of the landmark.23 Due to 
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the limited medical image training data at hand, we may take the Two-Stage Task-Oriented Deep Neural Networks24 into 
consideration to achieve better result. 
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